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3. Tables S1 to S2

Text S1. Biogeochemical Profiling Float Data This study used data from 35 of

the 45 autonomous profiling floats built at the University of Washington and deployed

by the SOCCOM program prior to July 2016 (float information given in Table S1). The

remaining floats were excluded because they lacked a pH sensor (6) or the pH sensor failed

within one month of deployment (4). Fifteen floats were deployed in the Pacific sector of

the Southern Ocean from three separate research cruises (Sloyan & Wijffels, 2016; Talley,

Johnson, Riser, & Hennon, 2014; Weller, 2015), eleven were deployed in the Atlantic sector

from two cruises (Boebel, 2015; Firing, 2016), and the remaining nine were deployed in

the Indian sector from four cruises (Cofin, 2016; MacDonald, 2016; Trull, 2015, 2016). All

deployments were accompanied by high-accuracy shipboard data collection to provide an

independent quality assessment and validation of the float sensors. Each float executed

a mission cycle (over either 5 or 10 days) that consisted of an initial descent to about

1000 m, drift with the predominant currents at that depth for a specified period of time

(approximately 4 or 9 days), descent to about 2000 m followed by a profile from that depth

to the surface. Once at the surface, each float transmitted its data via telecommunication

satellites to a shore-based data center and obtained a fix of its location via GPS.

On each float, a conductivity-temperature-depth sensor (SeaBird Model 41CP) reported

bin-averaged S, T , and p at 2-m vertical resolution above 1000 m and 100-m vertical reso-

lution below. In addition, each float was equipped with sensors to measure chemical prop-

erties of the water at variable vertical resolution (approximately 5 m above 100 m depth

and gradually increasing to 100 m below 1000 m). An optode (Aanderaa 4330) (Tengberg
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et al., 2006) measured the concentration of dissolved O2 on every float. Observations of

atmospheric O2 values were collected at the surface to enable accurate calibration of the

sensor data (Johnson, Plant, Riser, & Gilbert, 2015), which were also compared with the

shipboard bottle O2 data. Thirty-three of the 35 floats had an ultraviolet spectropho-

tometer (ISUS) (Johnson et al., 2013) that measured NO3 concentration. Four of these

failed shortly after deployment, leaving 29 floats with working NO3 sensors. The float

NO3 data were adjusted using a multiple linear regression at 1500 m depth (Williams et

al., 2016), and the adjusted data were validated by comparing to shipboard bottle NO3

samples measured on the deployment cruises (Johnson et al., 2017). On every float, pH

was measured by an ion-sensitive field effect transistor (Deep-Sea DuraFET) (Johnson

et al., 2016) and reported on the total hydrogen ion scale at in situ T and p. The data

were corrected for sensor drift in near real-time by performing minimal adjustments of

the sensor calibration to align pH measured at 1500 m with pH estimated from measured

T , S, p and O2 using an empirical multiple linear regression algorithm trained with high-

quality bottle pH data collected during recent Southern Ocean cruises (Wanninkhof et al.,

2016; Williams et al., 2016). After this adjustment, the final pH values were consistent

with independent shipboard measurements, with the standard deviation of the differences

equal to 0.007 (Johnson et al., 2016).

Text S2. Float-based Estimates of Air-Sea CO2 Flux Air-sea CO2 flux F was

calculated along each float path from (Wanninkhof, 2014)

F = kK0 (pCOocn
2 − pCOatm

2 ), (1)
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where k is the gas transfer velocity, K0 is the solubility, pCO2
ocn and pCO2

atm are the

partial pressures of CO2 in the ocean and atmosphere, respectively.

Measured pH was combined with an empirical estimate of total alkalinity AT to calculate

the remaining parameters in the carbon system, total carbon CT and pCO2
ocn at in situ

T and S, using the dissociation constants of fluoride from Perez and Fraga (1987); of

sulfate from Dickson (1990); of carbonate from Lueker, Dickson, and Keeling (2000);

and the boron to salinity ratio of Lee et al. (2010). A number of different empirical

methods have been proposed to estimate AT from measured seawater properties; two

different algorithms were tested here in order to gauge the sensitivity of the results to AT .

The choice of alkalinity estimation method is not expected to have a strong impact, as

when AT and pH are used together to calculate pCO2, the resulting pCO2 depends very

strongly on pH and changes in AT have little influence (Williams et al., 2017). Both the

locally-interpolated alkalinity regression (LIARv2; Carter et al., 2018) and the Southern

Ocean-specific multiple linear regression (Williams et al., 2017) calculate AT as a function

of T , S, p, and O2, but they are based on differing sets of high-quality shipboard AT

measurements. The mean difference between the resulting AT estimates was found to be

5.5± 6.4 µmol kg-1, which lies within the given uncertainty estimates for both methods and

results in a mean pCO2
ocn difference of 1.0 ± 1.2 µatm. Differences of less than 0.03 PgC

y-1 were found in the estimates of annual net CO2 uptake in each region when using these

two algorithms to compute AT . The results shown here use the AT estimate calculated

with the LIARv2 method. Furthermore, a bias arises when calculating pCO2
ocn from pH

and AT , due to uncertainties in both the equilibrium constants and the shipboard pH data
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used in calibration (see Williams et al. (2017) for detailed explanation and characterization

of bias). The pCO2
ocn values calculated here were corrected for this bias, which varies

with pH, using the empirical relationship developed by Williams et al. (2017). A recent

assessment using a much larger set of ship-board data found a very similar relationship

(Carter et al., 2018).

To test the sensitivity of the results to the depth sampling scheme, the seawater prop-

erties used in the flux calculation (T , S, and pCO2
ocn) were determined in three different

ways: 1) the value at the uppermost pressure at each profile, typically 5-7 m, 2) an av-

erage of in situ values over the mixed layer (with the mixed layer depth defined as the

depth where the density was 0.03 kg m−3 greater than the uppermost density (de Boyer

Montégut, Madec, Fischer, Lazar, & Iudicone, 2004)), and 3) an average of in situ values

over the upper 20 m or the mixed layer if it was shallower than 20 m. The results were

negligibly different except when the mixed layer exceeded about 400 m, and the associated

changes in the annual net flux estimates for each region were less than 0.04 PgC y-1. The

fluxes given here use surface ocean properties calculated as the average over the upper 20

m.

A squared wind speed-dependent parameterization (Wanninkhof, 2014) was used to

compute k in (1) from the Schmidt number (calculated with the float-measured T and S)

together with an estimate of the 10-m wind speed (U10). To assess the sensitivity to the

choice of wind product, k was computed using 6-hourly wind speeds at 0.75° horizontal

resolution from the ERA-Interim Reanalysis (Dee et al., 2011) provided by the Euro-

pean Centre for Medium-Range Weather Forecasting (ECMWF) and daily-averaged wind
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speeds at 0.25° horizontal resolution based on observations from the Metop/ASCAT satel-

lite (Bentamya & Fillona, 2012), obtained from the Centre de Recherche et d’Exploitation

Satellitaire (CERSAT) at IFREMER, Plouzané (France). For each wind product, the float

trajectories, measured T and S, and float-based pCO2
ocn were interpolated between con-

secutive profiles using piecewise cubic Hermite polynomials, to the times of the wind speed

estimates. The gridded wind fields were then interpolated spatially to the location of the

float and used with T and S to compute k at either 6-hour or daily intervals. Solubility

K0 was calculated at the same frequency from the interpolated T and S using the fit

provided by Weiss (1974).

To estimate pCO2
atm, observations of the mole fraction of CO2 in dry air were taken

from monthly measurements of air samples at the Cape Grim Observatory in Tasmania,

Australia and interpolated using piecewise cubic Hermite polynomials to the times of the

wind speed estimates. These values were then combined with an estimate of the mean

sea level pressure (SLP) at the float location, corrected for water vapor pressure using

the method of Zeebe and Wolf-Gladrow (2001), to give pCO2
atm at the float position.

When ERA-Interim winds were used, SLP was obtained from the same product; when

satellite ASCAT winds were used, SLP was taken from NCEP Reanalysis 6-hourly fields

(Kalnay et al., 1996). For each float profile, SLP was averaged over the preceding month

to account for the equilibrium time of air-sea gas exchange of CO2, although results were

unchanged when instantaneous SLP was used.

The flux F was calculated from these quantities according to equation (1). Sea ice

concentration CSI along each float trajectory was determined from daily satellite observa-
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tions of sea ice extent (Cavalieri, Parkinson, Gloersen, & Zwally, 1996). For the estimates

made using ERA-Interim winds, the air-sea flux at each time was adjusted by a factor of

(1−CSI) to account for the reduction in flux due to sea ice cover. All values of CSI > 95%

were set equal to 95% to account for sea ice leads following the methods of Takahashi et

al. (2009). The ASCAT satellite is unable to retrieve a wind speed in the presence of sea

ice; for these estimates the flux was assumed to be zero when sea ice was detected. The

differences in annual net uptake obtained using the two wind products were less than 0.01

PgC y-1 for all zones except the seasonally ice-covered region, where the change rose to

0.03 PgC y-1. The values shown here are those derived using the ERA-Interim fields.

Text S3. Definition of Southern Ocean Zones The Southern Ocean south of 35°S

was divided into five different zones by applying the criteria of Orsi, Whitworth, and

Nowlin (1995) to a mean 2014-2016 Argo-based climatology of temperature and salinity

(Roemmich & Gilson, 2009). The STZ was defined as the region north of the Subtropical

Front (STF), taken as the location where potential temperature (θ) at 100 m is equal to

11°C. The SAZ was designated as the region between the STF and the Subantarctic Front

(SAF), defined as the location where θ at 400 m is equal to 5°C. The PFZ was defined

as the region bounded by the SAF on the north and the Polar Front (PF) on the south.

The PF was determined as the location where θ equals 2°C along the θ-minimum in the

upper 200 m. Further to the south, the Antarctic-Southern Zone encompassed the area

between the PF on the north and the mean 2014-2016 September sea ice extent (defined

as the location with 15% sea ice concentration), as determined by Nimbus satellite sea

ice observations (Cavalieri et al., 1996). The SIZ was defined as the region south of that
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boundary not covered by ice sheets. The area of each region (Table SS2) was determined,

excluding all 1° grid boxes with mean bottom depths less than 1000 m.

Text S4. Uncertainty Estimates for Float-based Fluxes The total uncertainty in

the air-sea flux F for each float was derived from uncertainties in each of the terms in

equation (1) using a Monte Carlo simulation of the full calculation, with 5000 iterations.

To estimate the uncertainty introduced by spatio-temporal variability in each zone, the

standard error was computed from the variance in the monthly mean flux estimates in

each zone, taking into account the auto-correlation in the seasonal cycle of flux. These

two uncertainty estimates were then added in quadrature to give the total uncertainty in

the annual net flux in each region.

The total uncertainty in float-based pCO2
ocn results from uncertainties in the pH, es-

timated AT , and equilibrium constants used to calculate pCO2. Propagating all of these

sources of uncertainty in a top-down approach gives a predicted error in pCO2
ocn with

a standard deviation of 2.86% (11.4 µatm at a pCO2
ocn of 400 µatm). This value is

based on an update to the analysis of Williams et al. (2017) to reflect an increased un-

certainty in the O2 data used to adjust the pH sensor (from ±0.4% to ±1%). In the

Monte Carlo simulation, this total uncertainty in pCO2
ocn was divided into two parts to

reflect the understanding of the various sources of uncertainty (Williams et al., 2017).

The first component, normally distributed with a standard deviation of 2.2%, was applied

randomly to each float-based estimate of pCO2
ocn; the second component, normally dis-

tributed with a standard deviation of 1.8%, was applied systematically to all floats (i.e.,

as an offset to all float-based pCO2
ocn values).
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The uncertainties in T and S were taken to be uniformly distributed within the range

± 0.002°C and ± 0.01, respectively. The uncertainty in k was estimated from the un-

certainties in the measured T and S, the uncertainty in U10, and other uncertainties in

the model as described by Wanninkhof (2014) that amount to 12.5% plus an additional

10% when U10 < 3.5 m s-1. Since no uncertainty estimate was provided for the reanalysis

wind product, a normally-distributed error with a standard deviation of 1.5 m s-1 was

assumed based on a comparison with satellite-derived observations (Chaudhuri, Ponte,

Forget, & Heimbach, 2013). The uncertainty in K0 was calculated from the uncertainty

in T and S. The uncertainty in pCO2
atm was determined from the provided standard

deviation for the observed values of the mole fraction of CO2. A potential bias in SLP

of ±1 hPa was assumed for the entire region based on a comparison with in situ data

(Salstein, Ponte, & Cady-Pereira, 2008). The uncertainty in pCO2
atm was considered to

be spatially correlated among all floats.
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Figure S1. Measurements of pH for all floats in each zone. Light gray vertical bar highlights

winter months (JAS).
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Figure S2. Estimates of AT for all floats in each zone. Light gray vertical bar highlights winter

months (JAS).
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Figure S3. Estimates of pCO2
ocn for all floats in each zone. Light gray vertical bar highlights

winter months (JAS).
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Figure S4. Estimates of air-sea CO2 flux for all floats in each zone. Positive (negative)
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Table S2. Area and mean air-sea CO2 flux in each Southern Ocean zone for float-based

estimates and two ship-based estimates, Tak09 (Takahashi et al., 2009) and GCB17, (Le Quéré et

al., 2018). Positive (negative) flux indicates outgassing (uptake). Float-based estimates reported

as mean and ±1 standard error, determined with Monte Carlo simulation (see Text S4). Flux

from ship-based estimates given as the uptake in each region when those estimates were sampled

at the position of the floats; numbers in parentheses give flux for all grid boxes in each region.

Float-based flux Ship-based flux

Zone
Area Area-average Total Tak09 GCB17
[107 km2] [mol m-2 y-1] [PgC y-1] [PgC y-1] [PgC y-1]

Subtropical (STZ) 2.26 -1.30 ± 0.44 -0.35 ± 0.12 -0.42 (-0.40) -0.52 (-0.56)
Subantarctic (SAZ) 1.94 -0.43 ± 0.62 -0.10 ± 0.14 -0.30 (-0.23) -0.26 (-0.27)
Polar Frontal (PFZ) 1.43 0.03 ± 0.67 0.01 ± 0.12 -0.14 (-0.16) -0.05 (-0.11)
Antarctic-Southern (ASZ) 1.28 2.32 ± 0.74 0.36 ± 0.11 0.02 ( 0.00) -0.03 (-0.03)
Seasonal Ice (SIZ) 1.72 0.04 ± 0.31 0.01 ± 0.06 0.02 ( 0.02) -0.06 (-0.08)

Southern Ocean
8.64

LB uncertainty -0.08 ± 0.04
-0.81 (-0.77) -0.94 (-1.05)

South of 35◦S UB uncertainty -0.08 ± 0.55
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